3.3.85 \(\int \cos ^6(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\) [285]

3.3.85.1 Optimal result
3.3.85.2 Mathematica [C] (verified)
3.3.85.3 Rubi [A] (warning: unable to verify)
3.3.85.4 Maple [B] (verified)
3.3.85.5 Fricas [A] (verification not implemented)
3.3.85.6 Sympy [F]
3.3.85.7 Maxima [A] (verification not implemented)
3.3.85.8 Giac [F]
3.3.85.9 Mupad [F(-1)]

3.3.85.1 Optimal result

Integrand size = 26, antiderivative size = 266 \[ \int \cos ^6(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {231 i \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{512 \sqrt {2} d}+\frac {231 i a^3}{640 d (a+i a \tan (c+d x))^{5/2}}-\frac {i a^6}{6 d (a-i a \tan (c+d x))^3 (a+i a \tan (c+d x))^{5/2}}-\frac {11 i a^5}{48 d (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{5/2}}-\frac {33 i a^4}{64 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{5/2}}+\frac {77 i a^2}{256 d (a+i a \tan (c+d x))^{3/2}}+\frac {231 i a}{512 d \sqrt {a+i a \tan (c+d x)}} \]

output
-231/1024*I*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^(1/2)/ 
d*2^(1/2)+231/512*I*a/d/(a+I*a*tan(d*x+c))^(1/2)+231/640*I*a^3/d/(a+I*a*ta 
n(d*x+c))^(5/2)-1/6*I*a^6/d/(a-I*a*tan(d*x+c))^3/(a+I*a*tan(d*x+c))^(5/2)- 
11/48*I*a^5/d/(a-I*a*tan(d*x+c))^2/(a+I*a*tan(d*x+c))^(5/2)-33/64*I*a^4/d/ 
(a-I*a*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2)+77/256*I*a^2/d/(a+I*a*tan(d*x+ 
c))^(3/2)
 
3.3.85.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.24 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.20 \[ \int \cos ^6(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {i a^3 \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},4,-\frac {3}{2},\frac {1}{2} (1+i \tan (c+d x))\right )}{40 d (a+i a \tan (c+d x))^{5/2}} \]

input
Integrate[Cos[c + d*x]^6*Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
((I/40)*a^3*Hypergeometric2F1[-5/2, 4, -3/2, (1 + I*Tan[c + d*x])/2])/(d*( 
a + I*a*Tan[c + d*x])^(5/2))
 
3.3.85.3 Rubi [A] (warning: unable to verify)

Time = 0.35 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {3042, 3968, 52, 52, 52, 61, 61, 61, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^6(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sec (c+d x)^6}dx\)

\(\Big \downarrow \) 3968

\(\displaystyle -\frac {i a^7 \int \frac {1}{(a-i a \tan (c+d x))^4 (i \tan (c+d x) a+a)^{7/2}}d(i a \tan (c+d x))}{d}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {i a^7 \left (\frac {11 \int \frac {1}{(a-i a \tan (c+d x))^3 (i \tan (c+d x) a+a)^{7/2}}d(i a \tan (c+d x))}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 (a+i a \tan (c+d x))^{5/2}}\right )}{d}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {i a^7 \left (\frac {11 \left (\frac {9 \int \frac {1}{(a-i a \tan (c+d x))^2 (i \tan (c+d x) a+a)^{7/2}}d(i a \tan (c+d x))}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{5/2}}\right )}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 (a+i a \tan (c+d x))^{5/2}}\right )}{d}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {i a^7 \left (\frac {11 \left (\frac {9 \left (\frac {7 \int \frac {1}{(a-i a \tan (c+d x)) (i \tan (c+d x) a+a)^{7/2}}d(i a \tan (c+d x))}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{5/2}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{5/2}}\right )}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 (a+i a \tan (c+d x))^{5/2}}\right )}{d}\)

\(\Big \downarrow \) 61

\(\displaystyle -\frac {i a^7 \left (\frac {11 \left (\frac {9 \left (\frac {7 \left (\frac {\int \frac {1}{(a-i a \tan (c+d x)) (i \tan (c+d x) a+a)^{5/2}}d(i a \tan (c+d x))}{2 a}-\frac {1}{5 a (a+i a \tan (c+d x))^{5/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{5/2}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{5/2}}\right )}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 (a+i a \tan (c+d x))^{5/2}}\right )}{d}\)

\(\Big \downarrow \) 61

\(\displaystyle -\frac {i a^7 \left (\frac {11 \left (\frac {9 \left (\frac {7 \left (\frac {\frac {\int \frac {1}{(a-i a \tan (c+d x)) (i \tan (c+d x) a+a)^{3/2}}d(i a \tan (c+d x))}{2 a}-\frac {1}{3 a (a+i a \tan (c+d x))^{3/2}}}{2 a}-\frac {1}{5 a (a+i a \tan (c+d x))^{5/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{5/2}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{5/2}}\right )}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 (a+i a \tan (c+d x))^{5/2}}\right )}{d}\)

\(\Big \downarrow \) 61

\(\displaystyle -\frac {i a^7 \left (\frac {11 \left (\frac {9 \left (\frac {7 \left (\frac {\frac {\frac {\int \frac {1}{(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}d(i a \tan (c+d x))}{2 a}-\frac {1}{a \sqrt {a+i a \tan (c+d x)}}}{2 a}-\frac {1}{3 a (a+i a \tan (c+d x))^{3/2}}}{2 a}-\frac {1}{5 a (a+i a \tan (c+d x))^{5/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{5/2}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{5/2}}\right )}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 (a+i a \tan (c+d x))^{5/2}}\right )}{d}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {i a^7 \left (\frac {11 \left (\frac {9 \left (\frac {7 \left (\frac {\frac {\frac {\int \frac {1}{a^2 \tan ^2(c+d x)+2 a}d\sqrt {i \tan (c+d x) a+a}}{a}-\frac {1}{a \sqrt {a+i a \tan (c+d x)}}}{2 a}-\frac {1}{3 a (a+i a \tan (c+d x))^{3/2}}}{2 a}-\frac {1}{5 a (a+i a \tan (c+d x))^{5/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{5/2}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{5/2}}\right )}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 (a+i a \tan (c+d x))^{5/2}}\right )}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {i a^7 \left (\frac {11 \left (\frac {9 \left (\frac {7 \left (\frac {\frac {\frac {i \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2}}\right )}{\sqrt {2} a^{3/2}}-\frac {1}{a \sqrt {a+i a \tan (c+d x)}}}{2 a}-\frac {1}{3 a (a+i a \tan (c+d x))^{3/2}}}{2 a}-\frac {1}{5 a (a+i a \tan (c+d x))^{5/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{5/2}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 (a+i a \tan (c+d x))^{5/2}}\right )}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 (a+i a \tan (c+d x))^{5/2}}\right )}{d}\)

input
Int[Cos[c + d*x]^6*Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
((-I)*a^7*(1/(6*a*(a - I*a*Tan[c + d*x])^3*(a + I*a*Tan[c + d*x])^(5/2)) + 
 (11*(1/(4*a*(a - I*a*Tan[c + d*x])^2*(a + I*a*Tan[c + d*x])^(5/2)) + (9*( 
1/(2*a*(a - I*a*Tan[c + d*x])*(a + I*a*Tan[c + d*x])^(5/2)) + (7*(-1/5*1/( 
a*(a + I*a*Tan[c + d*x])^(5/2)) + (-1/3*1/(a*(a + I*a*Tan[c + d*x])^(3/2)) 
 + ((I*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[2]])/(Sqrt[2]*a^(3/2)) - 1/(a*Sq 
rt[a + I*a*Tan[c + d*x]]))/(2*a))/(2*a)))/(4*a)))/(8*a)))/(12*a)))/d
 

3.3.85.3.1 Defintions of rubi rules used

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3968
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_ 
), x_Symbol] :> Simp[1/(a^(m - 2)*b*f)   Subst[Int[(a - x)^(m/2 - 1)*(a + x 
)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && 
 EqQ[a^2 + b^2, 0] && IntegerQ[m/2]
 
3.3.85.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 437 vs. \(2 (214 ) = 428\).

Time = 108.03 (sec) , antiderivative size = 438, normalized size of antiderivative = 1.65

method result size
default \(-\frac {i \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (2816 i \left (\cos ^{5}\left (d x +c \right )\right ) \sin \left (d x +c \right )-256 \left (\cos ^{6}\left (d x +c \right )\right )+3696 i \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+3465 i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+3465 i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sin \left (d x +c \right )-528 \left (\cos ^{4}\left (d x +c \right )\right )+3465 i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+6930 i \cos \left (d x +c \right ) \sin \left (d x +c \right )+3465 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sin \left (d x +c \right )-3465 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \cos \left (d x +c \right )-3465 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )-2310 \left (\cos ^{2}\left (d x +c \right )\right )\right )}{15360 d}\) \(438\)

input
int(cos(d*x+c)^6*(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/15360*I/d*(a*(1+I*tan(d*x+c)))^(1/2)*(2816*I*cos(d*x+c)^5*sin(d*x+c)-25 
6*cos(d*x+c)^6+3696*I*cos(d*x+c)^3*sin(d*x+c)+3465*I*(-cos(d*x+c)/(cos(d*x 
+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1 
))^(1/2))*cos(d*x+c)+3465*I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan((-co 
s(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-528*cos(d*x+c)^4+3465*I*(-cos(d 
*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c) 
/(cos(d*x+c)+1))^(1/2))+6930*I*cos(d*x+c)*sin(d*x+c)+3465*(-cos(d*x+c)/(co 
s(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x 
+c)+1))^(1/2))*sin(d*x+c)-3465*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(( 
-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)-3465*(-cos(d*x+c)/(cos(d*x+c 
)+1))^(1/2)*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-2310*cos(d*x+c)^2)
 
3.3.85.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.12 \[ \int \cos ^6(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {{\left (3465 \, \sqrt {\frac {1}{2}} d \sqrt {-\frac {a}{d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {-\frac {a}{d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 3465 \, \sqrt {\frac {1}{2}} d \sqrt {-\frac {a}{d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {-\frac {a}{d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-40 i \, e^{\left (12 i \, d x + 12 i \, c\right )} - 350 i \, e^{\left (10 i \, d x + 10 i \, c\right )} - 1645 i \, e^{\left (8 i \, d x + 8 i \, c\right )} + 1433 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 3184 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 464 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 48 i\right )}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{15360 \, d} \]

input
integrate(cos(d*x+c)^6*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")
 
output
-1/15360*(3465*sqrt(1/2)*d*sqrt(-a/d^2)*e^(5*I*d*x + 5*I*c)*log(-4*(sqrt(2 
)*sqrt(1/2)*(I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 
1))*sqrt(-a/d^2) - a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 3465*sqrt(1/2)*d 
*sqrt(-a/d^2)*e^(5*I*d*x + 5*I*c)*log(-4*(sqrt(2)*sqrt(1/2)*(-I*d*e^(2*I*d 
*x + 2*I*c) - I*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(-a/d^2) - a*e^(I 
*d*x + I*c))*e^(-I*d*x - I*c)) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)) 
*(-40*I*e^(12*I*d*x + 12*I*c) - 350*I*e^(10*I*d*x + 10*I*c) - 1645*I*e^(8* 
I*d*x + 8*I*c) + 1433*I*e^(6*I*d*x + 6*I*c) + 3184*I*e^(4*I*d*x + 4*I*c) + 
 464*I*e^(2*I*d*x + 2*I*c) + 48*I))*e^(-5*I*d*x - 5*I*c)/d
 
3.3.85.6 Sympy [F]

\[ \int \cos ^6(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \cos ^{6}{\left (c + d x \right )}\, dx \]

input
integrate(cos(d*x+c)**6*(a+I*a*tan(d*x+c))**(1/2),x)
 
output
Integral(sqrt(I*a*(tan(c + d*x) - I))*cos(c + d*x)**6, x)
 
3.3.85.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 230, normalized size of antiderivative = 0.86 \[ \int \cos ^6(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {i \, {\left (3465 \, \sqrt {2} a^{\frac {3}{2}} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) + \frac {4 \, {\left (3465 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{5} a^{2} - 18480 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{4} a^{3} + 30492 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} a^{4} - 12672 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{5} - 2816 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{6} - 1536 \, a^{7}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {11}{2}} - 6 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {9}{2}} a + 12 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {7}{2}} a^{2} - 8 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} a^{3}}\right )}}{30720 \, a d} \]

input
integrate(cos(d*x+c)^6*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")
 
output
1/30720*I*(3465*sqrt(2)*a^(3/2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + 
 c) + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x + c) + a))) + 4*(3465*(I*a*t 
an(d*x + c) + a)^5*a^2 - 18480*(I*a*tan(d*x + c) + a)^4*a^3 + 30492*(I*a*t 
an(d*x + c) + a)^3*a^4 - 12672*(I*a*tan(d*x + c) + a)^2*a^5 - 2816*(I*a*ta 
n(d*x + c) + a)*a^6 - 1536*a^7)/((I*a*tan(d*x + c) + a)^(11/2) - 6*(I*a*ta 
n(d*x + c) + a)^(9/2)*a + 12*(I*a*tan(d*x + c) + a)^(7/2)*a^2 - 8*(I*a*tan 
(d*x + c) + a)^(5/2)*a^3))/(a*d)
 
3.3.85.8 Giac [F]

\[ \int \cos ^6(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int { \sqrt {i \, a \tan \left (d x + c\right ) + a} \cos \left (d x + c\right )^{6} \,d x } \]

input
integrate(cos(d*x+c)^6*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(I*a*tan(d*x + c) + a)*cos(d*x + c)^6, x)
 
3.3.85.9 Mupad [F(-1)]

Timed out. \[ \int \cos ^6(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int {\cos \left (c+d\,x\right )}^6\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \]

input
int(cos(c + d*x)^6*(a + a*tan(c + d*x)*1i)^(1/2),x)
 
output
int(cos(c + d*x)^6*(a + a*tan(c + d*x)*1i)^(1/2), x)